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A NONEQUILIBRIUM POLYDISPERSE FLOW IN AN AXISYMMETRIC NOZZLE 

WITH CONDENSATE PARTICLE COAGULATION AND BREAKUP 

P. M. Kolesnikov and V. V. Leskovets UDC 532. 529 

A kinetic description is given for the flow of a polydisperse medium, which is 
based on the general theory for nonequilibrium processes; the conversion to 
generalized transport equations is discussed and the closure of the infinite 
equation chain. An example is given of numerical calculations on such a flow 
in a nozzle on the basis of particle coalescence and breakup. 

i. Theoretical studies may be made on polydisperse media by means of kinetic, statis- 
cal, or phenomenological methods. In the kinetic description of a system having variable 
mass m, speed U, temperature T, angular coordinates O, angular velocity, ~, angular momentum 
M, interaction force F, and other such parameters, one introduces the phase volume dF and 
a generalized 14-dimensional phase space. 

d F  = d r d U d O d o d T d m  

with the generalized distribution 

:i(t, r, U, O, ~o, m, T). 

We consider the motion and particle interaction in phase space and get the gener~l 
kinetic equation there for the distribution: 

- -  )+ f,+ o , ot +Uwp +vo '9 -77- (i) 

One of the most difficult aspects of kinetic theory is to determine the collision inter 
gral Jij [1-4] in (i); if the medium is of sufficiently low density, it can be neglected 
[ 5 - 7 ] :  

4j = 0. (2) 

Near thermodynamic equilibrium, that integral can sometimes be represented approximately 
as a relaxation relation 
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S,j = t~- [o~ 
~j (3) 

The next assumption is the diffusion approximation, where instead of a relaxation term, one 
introduces the second derivatives in parameter space by analogy with the Fokker-Planck ap- 
proximation in ordinary kinetic theory [8-10], 

The collision integral can also be derived by means of a procedure for deriving a 
hierarchic system of kinetic equations [4, 6, 8, ii], but then there are difficulties 
enclosing the infinite chain, which have so far been overcome only for the simplest thermo- 
dynamic systems [4]. 

When the kinetic equations havebeen formulated, one can examine the primary processes 
at the microscopic level and obtain very detailed information. Kinetic-theory methods have 
been applied to complicated systems such as low-density gases and plasmas [3-8], liquids [12], 
dispersed media [9, i0], reacting systems [13, 14], and ones showing phase transformations 
[15-17]. 

Extending the theory to nonequilibrium processes with any values for the parameters is 
a major aspect of kinetic theory. Although considerable results have been obtained from ap- 
plying the theory to ideal and equilibrium systems, developments are still very much in hand 
for nonideal and nonequilibrium systems such as fluidized, theological, turbulent, or self- 
organizing ones. 

2. If a detailed description is superfluous, which is often the case for real measure- 
ments for observations on macroscopic processes, one can give an average description, where 
various statistical methods can be used, one of which is to average the kinetic equations 
describing the local behavior, where one ues rules and various additional conditions. Averag- 
ing the equations for molecular features leads to an infinite coupled chain. 

One multiplies (i) by a molecular feature ~i and integrates in the corresponding phase 
space to get equations for the average values of the molecular feature, which in kinetic 
theory are called transport equations for the molecular feature ~i or generalized Maxwell- 
Enskog transport equations, as derived in gas kinetic theory [5]. If one averages (i) overall 
U, ~, T, and m, one gets the generalized transport equation 

-.~aU~d~drSdmL Ot +UVrh+W ~ h  +~Vof~+V~ ~ f ~  +VT ~ + 
(4) 

If one takes for example the moments of the velocity, U n, where n = 0, i, 2, ..., (4) 
gives an infinite system of coupled equations, some of which have the meanings of the con- 
servation laws for mass, momentum, and energy, while others generate the closure equations. 
With such averaging in kinetic theory, one has a problem in obtaining a closed system suf- 
ficient to describe the coupled transport. Closing the chain of averaged moment equations 
is an unsolved problem at present. In kinetic theory, there are various systems of closure 
equations, which may be constructed from seven, 13, 21, or even 52 moments. Progress can be 
made here by integrating the chain directly by numerical or asymptotic methods in particular 
cases. 

Distributions have to be determined by solving the kinetic equations, which is compli- 
cated even in the simplest case such as a Boltzmann equation. 

The averaged systems give the fluxesof the molecular features (mass, momentum, energy, 
and so on), from which one can determine thermophysical parameters for comparison with ex- 
periment to judge the accuracy and other aspects of the closure system. Transport theory 
thus gives not only the equations but also the parameters apperaing there in phenomenological 
transport theory. 

3. An example is a polydsperse medium in a channel, such as an axisymmetric two-phase 
flow in a Laval nozzle, where condensate droplets may coalesce or break up. If the condi- 
tions mentioned for example in [18] are meant, the flow can be described on a multivelocity 
multitemperaturemodel for a continuous medium [19-23], in which the actual flow is replaced 
by the flow of several interpenetrating and interacting continuous media. 
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In [ 2 0 ] ,  
tinuum with exchange between 
terms for the rates of mass, 
case of an axisymmetric flow 

a system has been given for the motion of such a medium as a multivelocity con- 
f r a c t i o n s  d e s c r i b e d  by  b a l a n c e  r e l a t i o n s ;  i f  own g i v e s  d e t a i l e d  
momentum,  and  e n e r g y  t r a n s f e r ,  one  h a s  s y s t e m  f o r  t h e  p a r t i c u l a r  
in the Lagrange representation for fraction interaction [22]: 

! 

vvpU - -  O, vg9uU + (gp)~ = y ~ 9 iC~  (u, - -  u), 
i ~ l  

l 

vvo~u + (vp)~ - p = v ~ v,c;~ (v, - o), 

t 

VWHoU = v ~ v, {c~,c~ (T, - -  T) + C~, [u, (u, - - . )  + v, (v, - -  v)l}, 
i = 1  

(k -  ~__~)  Ho P : P  k 2 ' 

l l 

1=1 7=1 i = i  
i 

vvp,~,,u, : v {p,c;, ( .  - . , )  + ,~, ~ ~;;o~ : , , J -  (: - '~,~1 .,1 - 
7"=1 

(5) 

l 

- -  p, ~ K~inj [u i - -  (I - -  ~ , j )  uu] }, 
l = i  

i I 

vv~,,~, ,u,  = y {~,,c;~, ( ~ , -  v , ) +  n, ~ K;~p, I~', - -  0 - - ' P . )  ,,,l - -  O, y . ,  ~ ; , , , ,  I~', - -  0 - -  'P, , )  ~,1}. 
i=l i=i 

Cd cd i=I 

l I i 

l 
F-.ji = Cd(TJ - -  Ti) -']- - ~  [(uj - -  ui) z + (vj - -  vi)2], K;i = Kij,Efi. 

(6) 

The collision-performance factor is provided by the [23] expression, which incorporates the 
effects from the gas flow on the collisions between particles in fractions i and j: 

0 4 3 4 - -  --0 133  m r = 1 - -  0.247 ~e  d Lp/ " (ri/r:) ~ 

_ 0 . 1 8 . . .  o 67~ o3os-  o l  wes" t4eii t.p t" 17 (ri/rs)2"27. 

The particle trapping coefficient Eij is defined from [18]: 

E~i : (Edi/. "Jr- Ep#Reis/60)/(1 + Reij/60), 

Edq = [1 + 0.75 in (4 Stku)/(2 Stk/j - -  1,214)] -2 ,  

Epq = [(Stk/y)/(Stk u + 0,25)]2. 

The resistance coefficient CRi is described by a system of correlation equations 
subsonic flow 

[24]: 

(7) 

(8) 

:~or 
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[{ ~e{ / -~-2 [ 3.65--1.53 (Ti/T) Cm=Cnoi I-{-- Re -a t- M 4.33 + 1 + 0.353 (TilT) 
( r :  R e ) ] y  Re 

X exp --0.247 1 /  ~ M + ~ { [ 4 , 5 - ] - 0 . 3 8 ( 0 , 0 3 R e +  

-{- 0.48 I/R-~)]/(1 -{- 0.03 Re-l- 0,48 -VR-e) -}- 0.1/62 -}- 0.2M 3} x 

x exp (-- 0,5M/V'R~) .-I-. 0.6 M V ~k--2 [1 ' exp (-- M.,'Re)I ]; 

X 

(9) 

and for supersonic flow with M > 1.75 

Cm = {0,9 -{- ---MT- -I- - -  , . ~  2 Jr" ~ + 

+ ]/kM"058 V2T,T k~M ~4]}/ (1 + 1,86 bIV--~- ) :  

In the range 1.0~M~,I.75 CRi is derived by linear interpolation [24]. 

The heat-transfer coefficient C~i is defined [25] on the basis of the Cavano correction 
for the effects of inertia and gas dilution: 

C=i = C=o~ Nu~ + 3,42M, Nu~ 
. n 1- ,  O 5 5 ~  0 3 3  ',,u == 2 -}- 0,459 ~,ei' vr ' , C~o~ ---- 1,5p/(pBir~Pr). 

One also incorporates the aerodynamic deformation in the droplets and the scope for breakup 
at the critical Weber number We,. The deformation is incorporated by making corrections to 
CRi and in the expression for Kij [23]: 

i ol 5 �9 exp (0.03 W.i '  ) ~ [1:, Re 8 ~ 700, 

C' ~i = Cm. ~ (1 T 0.03We~) 2 ---- I~, R % ~  150, 
J ( fl~ d- (~g, -- .~2)/550 (Re -- 150), 150 ~ne s ~. 700, 

K~i = ~ Io (1 + 0.03 We,) 4- rj (1 + 0.03 Wej)l 2 IUi - -  U~J. 

We consider the flow in a nozzle, in which the longitutinal speeds of the gas and droplets 
in the subsonic or transonic range and in the supersonic range (I and:ll correspondingly) 
are alwyas positive. For I, the system (5) for the gas is replaced by a nonstationary one 
(apart from the energy equation, which is hyperbolic along a current line x), while (6) 
remains stationary, since it is x-hyperbolic for u i > 0. An iterative method [26] is used, 
which with known patterns for the parameters is used to integrate (6) and to compute and 
store the right-hand sides in (5). Then (5) is solved and the process is repeated until it 
converges withthe necessary accuracy. 

To integrate (5) by the collocation method, one uses a conservative MacCormac difference 
scheme with a second-order accuray [27]; one integrates (6) by means of an explicit-inexplicit 
second-order scheme. 

The supersonic range is handeled by integrating (5) and (6) together, which here are of 
x-hyperbolic type; the calculated parameters are used at the right-hand boundary x = xl to 
region I to derive the initial data for the supersonic flow at x= xz, where the Mach number 
at the axis of the nozzle is M = 1.01. The parameters on the line x = x I are derived by 
linear extrapolation from the internal nodes subject to the condition x 2 < x I to avoid any 
effect on the calculation in region II. At he left-hand boundary to the subsonic and tran- 

744 



sonic range, which coincides with the inlet section to the nozzle (x = x0), three boundary 
conditions are set for the nostationarys ystem (5): 

i) constant total enthalpy 

2) constant entropy 

LI 2 -7[- U 2 H o - ~  P + - - ;  
k--i p 2 

S = ptp~; 

3) velocity vector direction 

V/U  ~ 

Y(x)  dx . . . .  

The initial flow is assumed to be in equilibrium and the droplet parameters are taken 
as equal to these for the gas, and 

z 

9 (xo, y) = p (xo, y) 7-2-7__ z ~,. 

It is further assume that the droplets have log-normal distribution at the inlet with 
standard deviation o = 1.5 and mean geometrical diameter d s = I.I ~m. 

Symmetry conditions are imposed for (5) and (6) at the axis, while the no-penetra:ion 
condition applies for the gas at the wall: 

v (x, Y) = u (x, v)  d r  (x)/dx, 

while the attachment condition applies for the droplets. 

The solution range for (5) is modified by introducing the new independent variables 
2=x, ~= [y/Y(x)] 2 ; this also causes the difference net to become more closely space towards 
the wall, which raises the accuracy in calculating the gas parameters in the narrow wail 
zone free from droplets. In those variables, (5) written as conservation laws becomes 

O~ OG + OQ 
0---7-- @ - ~ x  2 - - = M ,  o~ 

in which 

(I0) 

f = Ya(9, 9u, 9v) ~, G = (pu, 9u ~ §  puv) ~ y2; 

Q = Y V ~ ( v  - V ~ Y ~ )  (o, o., pv)'; 
l l 

i ~ l  1=1 

We apply the MacCormac difference scheme to (i0): 

Ax At ' 

The equations for the droplet motion are written along the droplet paths y i j ( x )  
tion laws: 

as  conserva- 
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Fig. I. Distribution of the Mach-number 
linesand positions of the limiting dro- 
plet lines for various diameters: i) 1.07 
~nn; 2) 2.13; 3) 4.26 for z = 0.32 (b) in 
an axisymmetric nozzle (a). 

S,O 

O,2. 6 

01- S 

8 8 

-z 0 q x 

Fig. 2. Variation in condensate droplet 
diameter dsi (~n) along a nozzle for frac- 
tions 2, 4, 6, 8, 9, and I0 and relative 
densities PSi for fractions 4, 5, 6, 7, 
and 8 (the numbers are those of the frac- 
tions). 

in which 

dAi q_ Ei ( A i  - -  F i )  -3 L D i = O, 
dx 

dy~j oij 
dx u~j 

Ai = a {Pi, ui, n~ul, piu~, pitQ, v i, pdiT,}~; 

E i is a diagonal matrix having components 

(1.1) 
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Fig. 3. Variations in mean mass size d43 in ~m: 
a) along nozzle for z = 0.I (curve I) and z = 0.32 
(curve 2); b and c) variations correspondingly in 
d43 and z s across the nozzle in the sections x = 
-0.944 (curve 1); 0 (2); 1.34 (3); 8 (4). 

3- 
2 

l 
26OO 

.2ltO0 

2000 .~n 

7 
a 4 8 ~ x 

Fig. 4 .  Variation in specific momentum I 
in m/sec (curve i), scattering loss Ss in 
% (curve 2), and two-phase factor Sn in % 
(curve 3) along nozzle. 

{o, o, C~du~, C~du~, Cju~(cdc,)}; 
F~=apiui{O, O, u, v, T} ~, a = y u A  u, A u = y u - - y i j - l ;  

and D i are the coalescence terms from (6); j is the number of the droplet path. 
the explicit-inexplicit scheme [28] for (ii) as 

We write 

~.n.+l n n ^ n ,, = [ ( A q -  AxDq)ATi-q- AxE~ Fg.+tl/tAT+l (1 --}- AxEq)], 

A~+I = A u k q - q -  2 ' -  ,1 

a .  IA?; (eT~ F,3 - -  O,~) + a,~ -+' (~7,. +~ FF'  - -  f iF')]}  • + 2 
• A~i +1 I -+- AxE~~ '/2 q-- 2-- - i i - q  ' E • ' / 2  2 

The c a l c u l a t i o n s  on  t w o - p h a s e  f l o w s  w e r e  p e r f o r m e d  f o r  r a d i a l - c o n i c a l  n o z z l e s  w i t h  
parallel inlets (Fig. la); the nozzle contour in the minimal section is formed by an arc 
of a circle having radius R 2 = 2.01 (here and subsequently, all the dimensions are referred 
to the radius of the minimal nozzle section r,), which has its center on the y axis and to 
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which there are linked segments of straight lines whose inclinations to the axis are O1=52 ~ 
for the subsonic range or @~=20 ~ for the supersonic one. The radius of curvature is R I = 
1.15 for the coordinates of the sections are shown in Fig. la. The nozzle contour is pro- 
vided as a table, which is fitted to a bicubic spline with smoothing. The smoothing proce- 
dure has been described [29]. 

We used a set of i0 fractions, which in accordance with [30] was sufficient to provide 
the required accuracy. 

The nozzle inlet data for model combustion products had '[26]: T o = 3100 K, P0 = 6 MP/ 
m 2, ~ = 8.234 kg/m s, m = 26.2 kg/kmol, ~o = 8.937 x i0 -s kg/m. sec, Pr = 0.69, c d = 1876 J/ 
kg.K, z = 0.32, 1 = i0, and o d = 0.4 N/m. The sizes of the droplets for fractions from one 
to i0 in the inlet section correspondingly were denoted by dsi 0 in ~m of: 0.75; 1.07; 1.51; 
2.13; 3.01; 4.26; 6.03; 8.53; 12.07; 17.07. 

Figures 1-4 give some results for the basic form of nozzle with the above data unless 
otherwise mentioned; the general flow pattern in the neck region, where there are the highest 
parameter gradients, is shown in Fig. lb. The solid lines are those of equal Mach number 
or the limiting lines for three fractions: curve i for dsi in pm of 1.07, 2 for 2.13, and 
3 for 4.26, while the dashed lines are the similar ones for the gas without the second phase. 
As in [21-23], the sonic line in the expanding part of the nozzle is deflected as x increases, 
and one gets zones where there are small droplets at concentrations, whose width is dependent 
on the droplet growth rates in the subsonic part. 

The droplet sizes are amongstthe major parameters governing the integral characteris- 
tics; Fig. 2 shows how the diameters in the various fractions vary (the numbers are those of 
the fractions) along the nozzle. In the narrowing part, the droplets enlarge appreciably 
(the dsi in ~m are given on the axis). The most pronounced changes occur for the large frac- 
tions, and in particular the diameters of fractions 8, 9, and i0 increase in the section 
x = 2 by factors of 1.66, 1.7, and 1.57 by comparison with the initial ones. The small and 
medium droplets do not change in size so substantially. The large fractions are much reduced 
in size in the transonic region because of rapid breakup. This occurs less rapidly in the 
exit section for the large fractions such as 8 and I0, where the sizes are reduced by factors 
of 1.4 and 2.07 by comparison with the initial ones. The sizes are relatively constant for 
x > 6, which is due to the reduced collisions because of the lower volume concentrations and 
lower density in the supersonic part. Figure 2 also shows the distributrion for the relative 

l 

pfi=Epsi/p along the nozzle (the numbers are the fraction ones). The average over the cross 
i=I 

section d4s (Fig. 3a) shows that there is a predominant tendency for the droplets to enlarge 
in thesubsonic part and to become smaller in the transonic one and partially so in the super- 
sonic one. As the mass proportion of the condensate falls (curve 2, z = 0.i), there is a 
less pronounced increase in the subsonic part, as the fractions interact less vigorously. 
The variations in d4s (in pm) in a series of sections may be seen from Fig. 3b (curve 1 for 
x = -0.94, 2 for 0, 3 for 1.34, and 4 for 8). Here the stepped d43 distribution correspond- 
ing to the I0 fractions has been smoothed, as is characteristic of an actual distribution. 
Figure 3c shows the same sections (curves 1-4) and gives the distributions for the local 
relative condensate flow rate 

[ ...... Z- " 

'. = Z + Z 
i = 1  i=l 

Figu re  4 shows i n t e g r a l  c h a r a c t e r i s t i c s :  s p e c i f i c  momentum, l o s s  due to  two-phase s t r u c -  
t u r e  ~n, and s c a t t e r i n g  ~s- 

NOTATION 

m i, M, and c, mass, moment of inertia, and thermal capacity of droplet; Jij, integral 
for the elastic and inelatic interactions between fraction i and fraction j; ~ij, relaxation 
time; #(e), observed scattering indicatrix; foi equilibrium function [8]; u and v, components 
of velocity vector U along x and y axes; p, density; p, pressure; T, temperature; CRi and Cei, 
resistance and heat-transfer coefficients; H0, stagnation enthalpy; k, adiabatic parameter; 
Y(x), nozzle contour; Yi(x), upper boundary to region occupied by fraction i; ~, dynamic vis- 
cosity; r, droplet radius; a, surface tension; and speed of sound; Kij, coalescence constant; 

- V ~ij, collisionperformance factor; Edi j and Epij, particle trapping coefficients for iscous 
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flow (Re> 30) and for potential flow in the region Stk~j>0,1 ; ni, number of droplets in frac- 
tion i in unit volume (numerical concentration); ~i, relative mass fraction for fraction i; 
z, mass fraction of condensate as a whole; M Mach number M=I[I~--U]/a ; Reij, Reynolds number 
Re~j=2r~PdlU~--U~I/~d,. ; Nui, Nusselt number; Pr Prandtl number pr=cp~/~ ; We Weber number We=2pB 
U2r/a:d Stk~j ; S tk i~  , So tokes  number Stko=[U~.--U~[r~pfl9rj~ ; Lp j ,  L a p l a c e  number.Lp~=2r~djpfl '~;  
subscripts s and ~ values relating to parameters and material of droplets correspondingly, 
subscript o parameter at stagnation point; n, i, and j inteters. 

LITERATURE CITED 

I. P. M. Kolesnikov and A. A. Karpov, Nonstationary Two-Phase Gas-Liquid Flows in Channels 
[in Russian], Minsk (1986). 

2. P. M. Kolesnikov, Transport-Theory Methods for Nonlinear Media [in Russian], Mins~ 
(1981). 

3. L. Boltzmann, Lectures on Gas Theory [Russian translation], Moscow (1956). 
4. N. N. Bogolyukov, Selected Works in Three Volumes [in Russian], Vol. 2, Kiev (197~). 
5. S. Chapman and T. Cowling, The Mathematical Theory of Inhomogeneous Gases [Russian 

translation], Moscow (1960). 
6. J. Ferziger and G. Kaper, The Mathematical Theory of Transport in Gases [Russian ~ransla- 

tion], Moscow (1976). 
7. P. M. Kolesnikov, Electrodynamic Plasma Acceleration [in Russian], Moscow (1971). 
8. Yu. Ya. Klimontovich, Statistical Physics [in Russian], Moscow (1982). 
9. V. P. Myasnikov, Zh. Prikl. Mat. Tell. Fiz. , No. 2, 58-67 (1986). 

i0. Yu. A. Buevich, Prikl. Mat. Mekh., 35, No. 3, 464-481 (1971). 
ii. A. M. Gurov, The Principles of Kinetic Theory: Bogolyubov's Method [in Russian], Moscow 

(1966). 
12. C. Crocksten, Liquid-State Physics: A Statistical Introduction [Russian translation], 

Moscow (1978). 
13. B. V. Alekseev, The Mathematical Kinetics of Reacting Gases [in Russian], Moscow ~1982). 
14. S. V. Vallander, E. A. Nagnibeda, and M. A. Randalevskaya, Some Aspects of Kinetic 

Theory for Chemically Reacting Gas Mixtures [in Russian], Leningrad (1977). 
15. Ya. I. Frenkel', The Kinetic Theory of Liquids [in Russian], Leningrad (1975). 
16. V. P. Skripov, Metastable Liquids [in Russian], Moscow (1972). 
17. V. A. Akulichev, Cavitation in Cryogenic and Boiling Liquid [in Russian], Moscow ~1978). 
18. L. E. Sternin, Principles of Gas Dynamics for Two-Phase Flows in Nozzles [in Russian], 

Moscow (1976). 
19. R. I. Nigmatulin, Prikl. Mat. Mekh., 34, No. 6, 1097-1112 (1970). 
20. A. N. Kraiko, R. I. Nigmatulin, V. K. Starkov, and L. E. Sternin, Surveys of Scierce 

and Engineering: Hydromechanics [in Russian], Vol. 6, Moscow (1972), pp. 127-153. 
21. I. M. Vasenin, V. A. Arkhipov, V. G. Butov, et al., The Gas Dynamics of Two-Phase Flows 

in Nozzles [in Russian], Tomsk (1986). 
22. A. D. Rychkov, Izv. Akad. Nauk SSSR, Mekh. Zhd. Graze, No. i, 82-90 (1980). 
23. L. E. Sternin, B. N. Maslov, A. A. Shraiber, and A. M. Podvysotskii, Two-Phase Mon- 

odisperse and Polydisperse Flows of Gas Containing Droplets [in Russian], Moscow (1980)~ 
24. Henderson, Raket. Tekh. Komon., No. 6, 5-7 (1976). 
25. Carlson and Hogland, Raket. Tekh., No. ii, 104-109 (1964). 
26. Yu. F. Kisarov and A. M. Lipanov, Izv. Akad. Nauk SSSR, Mekh. Zhd. Graza No. 4, 16]-165 

(1975). 
27. R. W. MacCormac, AIAA Paper, No. 354, 1-8 (1969). 
28. A. D. Rychkov, Numerical Methods in Visocus-Liquid Dynamics [in Russian] (1983), p?. 

86-92. 
29. A. A. Blynskaya, YU. B. Lifshits, V. D. Perminov, Uch. Zap. TsAGI, 5, No. i, 128-131 

(1974). 
30. A. P. Tishin and R. I. Khairutdinov, Izv. Akad. Nauk SSR, Mekh. Zhd. Graze No. 5, 

181-185 (1971). 

749 


